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ABSTRACT

The stability of the critical state for flexural buckling

of a plate of incompressible isotropic elastic material with

arbitrary strain-energy function is studied. Most of the analy-

sis is carried out without restriction on the magnitude of the

aspect ratio of the plate. However, the final result is limited

to the case when the aspect ratio is such that terms of fourth

degree in it may be neglected in comparison with terms of zero

degree.
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2.

1. Introduction

In the present paper we consider a plate of incompressible

isotropic elastic material to be situated with its edges parallel

to the axes of a rectangular cartesian coordinate system x . The

plate is acted on by dead-loads applied normally to the faces of

the plate which are perpendicular to the 1 and 3-axes of the system

x . The faces perpendicular to the 2-axis are force-free. The

constraints on the 1 and 3-faces are such as to permit the plate

to undergo pure homogeneous deformations. It is supposed that the

load in the 1-direction is a thrust. As this thrust is increased

static bifurcation solutions in the 12-plane, superposed on a uni-

form extension in the 3-direction, become possible at certain

critical values. These solutions may correspond to buckling of the

plate of the flexural or barreling type. In [1,2] the compression

ratios in the 1-direction at which these critical values of the

thrust are reached was calculated for an arbitrary strain-energy

function.

In a previous paper (3] we discussed the stability of the

states of pure homogeneous deformation at which these bifurcations

occur, with the assumption that the strain-energy function is neo-

Hookean. The stability criterion employed and the procedure adop-

ted was. essentially that due to Koitc- An equilibrium state

is regarded as stable or unstable accurm.._iy as the potential

energy of the system, consisting of the body and loads, has a

proper minimum at this state with respect to all infinitesimal

deformations ;atisfying the kinematic constraints. It was seen in

[3] that a state of pure homogeneous strain for which a bifurcation
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solution exists is one of neutral equilibrium. The state is

stable if the potential energy of the system is smaller for this

state than it is for every state in its neighborhood which satis-

fies the kinematic constraints; otherwise it is unstable.

With this criterion it was shown in (3] that at critical com-

pression ratios for flexural buckling the homogeneous state is

stable provided that the aspect ratio (2-dimension/l-dimension) is

less than about 0.2, and unstable otherwise. This implies that

the immediate post-buckling behavior will be stable for the lower

aspect ratios and of the snap-through type at the higher aspect

ratios. At critical compression ratios for buckling of the barrel-

ing type, the homogeneous state is stable for all aspect ratios.

These calculations were carried out in [3] for aspect ratios

ranging from zero to infinity. The formula on which these calcu-

lations were based is extremely complicated and acquires meaning

only as the result of the numerical computations. Accordingly,

for the case of flexural buckling an asymptotic calculation valid

for small values of the aspect ratio was also carried out. As the

aspect ratio tends to zero this result agrees with the classical

result of Euler based on the theory of the elastica.

In the present paper analogous calculations are carried out

for an incompressible isotropic elastic material with arbitrary,

rather than neo-Hookean, strain-energy function. While much of

the analysis (up to §7) is carried out with no restrictions on

the magnitude of the aspect ratio, the final result, which is given

in equation (11.25), is obtained only for the case of small aspect

ratio.
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2. Statement of the problem

We consider a rectangular plate of incompressible isotropic

elastic material, which has its edges parallel to the axes of a

rectangular cartesian coordinate system x. Let 6 be the vector

position, relative to the origin of the system x, of a generic

particle of the plate in its undeformed state (state 0) and let

its bounding surfaces in this state be the planes

A= ± A (A=1,2,3) . (2.1)

We suppose that the plate is maintained in an equilibrium

state of pure homogeneous deformation (state I), with extension

ratios X ,X 2,)X3 and principal directions parallel to the co-

ordinate axes, by uniformly distributed normal tractions applied

to the surfaces 1 = ± i and C3 = ± t3' the surfacesi1
C= ± t2 being force-free. Let H11 and 1133 be the tractions,

measured per unit undeformed area, applied to the faces C I

and C3 = 13 respectively.

We assume that the surfaces initially at C= ± j and

3 ± 3 are constrained so that they move parallel to the 1
3 3

and 3-axes respectively, but points on them are free to move in

the planes normal to these directions (i.e. the tangential trac-

tions on these surfaces are assumed to be zero).

Let X be the vector position in state I of the particle

which has vector position in state 0.
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Then,

XA XAtA (Ail,2, 3), X1x2X3 1 . (2.2)

Now suppose that the plate undergoes a further deformation

which consists of a uniform stretch in the 3-direction and a

plane deformation in the 12-plane. We call the resulting state

of deformation of the plate state II, and we write

x - X + u , (2.3)

where

u1 =u l(tl, 2) , u 2 ' u2 (t1,t2 ) , u 3 = 3 EE3 , (2.4)

and E is a constant.

Since the material is incompressible, detiIx. ,, 
fI f 1 .

It follows with (2.2)-(2.4) that

(l+E)CU 2,2 +X2Ull+U llU2,2-Ul,2U2,1) + XlX2 E = 0 . (2.5)

Let C = 11Cijjj , y = jyijjj be the Finger strain

matrices in states I and II respectively. Then, with (2.2),

CAB  A AB , ij 0 XimX),m * (2.6)

* Throughout this paper, latin subscripts take the values 1,2,3 and greek
subscripts take the values 1,2. The Einstein summation convention applies
to lower case latin and greek subscripts but not to upper case latin sub-
scripts. Also, the operators a/a, a/a are denoted ,a and ,m
respectively.
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We introduce the notation

Y = C + c , c cijII (2.7)

From (2.4), (2.6) and (2.7), we obtain

2 c2 =)(2u.2+u2 2

ll (2X1+Ull)U, +U1,2 C22 (2 2 +2 ,2 )u2, 2 +U2,1

c x 2 E(2+E) , c 1 2  C2 1 = (XI+UI,)u 2 1 +(X 2 +u 2 2 )u 2 ,

(2.8)

c. = 0 (ijf23,32,13,31)

Let 11,12 be the invariants of y and Ii, 12 those of

C defined by

1I = A.A. 12 A= A
1i 1 2) 121

= tr y i l+i 1 , 12 f {(tr y)2 -tr y2 } = 12+ i 2 • (2.9)

With the notation

= - 2 /A 1 ,
(2.10)

K[]u ~u + *2(u 1 2 u 1 u1 1 u2[U]= Us~e, + 1U,2U2,1-U1,1U2,2)

it follows from (2.5)-(2.9) that

i= i, i 2 = X2(i+j) , (2.11)

where
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i = 2{X1 (1-X2) Ul 1 + (X2 -x2 )E} + K[u]
2 2 E2 _2X 2E3

2 3 2
+x 3X+2X PE 2  2 2X (1+E) -1

j = E{2(X2+X2-x32 ) + (2+E)i (2.12)
1 Ell+X 2  3 2 )

2 [X2 -+ 2]

3 4E X x (4+3E)(l+E) 1

Let W and w denote the strain energies per unit volume

in states I and II respectively. Then,

w = w(Il,1 2 ) , W = w(I 1 ,1 2 ) . (2.13)

We introduce the notation

aw a2 w
wa = , w =-

(2.14)

Wt = wa(I 1iI 2 ) ,Wa = w 2.(IiI2 .

The increase in the strain-energy of the plate in passing from

state I to state II is given by

2t (w-W)d~ld~ 2t E2 3 r(Wa'a+2 w i i

+ W( 3 ) + W( 4 ) + , (2.15)

* The domain of integration for the double integrals is the
rectangle (-11I ) x(-t29 t
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where

W(3) ii i W(4) = 1 W Bii , (2.16)=6 Waay a 0 Y 2 asyi~ a "0 Y "

and ) denotes the usual Taylor series remainder.

Let 11a denote the Piola-Kirchhoff stress in state I

Then (cf.[l], equation (3.6))

Hl1 =2AI(I-A2 )(W +AW2 )2 -1I
1133 = 2 X3 -x IN (W+X 2W) W (2.17)

Rai = 0 (ai # 11,33)

It follows from the constraint conditions on the surfaces

l= that the displacement field u must satisfy the

conditions

u1,2 (±ti, 2) = 0 . (2.18)

With the further assumption that the displacements of these two

surfaces are equal and opposite, we obtain

u1 (Zll 2 ) - -ul(-tlE 2 ) = Xletl , (2.19)

where e is a constant.

The resultant forces acting on the faces 1 ± and

3 3  in state I are obtained from (2.17) as ±4t 2 3 nl and

U t I£ 3 respectively. We suppose that state II is reached

from state I under dead-loading conditions. Then these are also

the resultant forces acting in state II. The increase in the

potential energy of these forces in the passage from state I to
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state II is

-8Ltt2t 3(X IeI11 + X 3Eli 3 3 ) .(2.20)

With (2.17) and (2.19) this may be written in the form

-4It3 f X11+ 3JW Il A2w w 2 )u 1,1+ (A 3A 2(Wi 1AW 2 )EdE1 dE2. (2.21)

The increase G~u] in the total potential energy of the

system, consisting of the body and loads, resulting-from the de-

formation from state I to state II is given by the sum of the

quantities in (2.15) and (2.21). With (2.11) and (2.12), G~u]

can be expressed by

G~u]= 2 3 J J [(W14X3W2){fK[u] + (X3 2E 2

+ 2 {4.Xl(1X 2)Eul + 2x+3A ~x4 3X2)E2
3 1+WA{ 3 1 22P

+ 2EK[u]l

+. .7{W 1 1 i 2A3 ~W1 2 i(i+j) + X 3 W2 2 ('+j) 2

+ W()+ W(4 ) - 2 X2W E3 (1+E)-1

2 21
+ X2WE 2 {iE[X2 (24.e) -2 1E3 2 32

+ X 1X2(4+3E)(l+E)2] + (5]d 1 dE 2 (2.22)

We shall say that the state I is stable if G[u] is positive

definite for all u lying in a neighborhood of u -0 and

satisfying the kinematic constraints (2.5) and (2.19).
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3. Critical equilibrium states

A necessary condition for stability of state I is that the

second variation G2 [u] of G[u] 1,e non-negative for all

sufficiently small, kinematically admissible values of u . With

(2.10) and (2.12) it follows from (2.22) that

G2[u] = 2t3 f f [k1 {i[u] + (A2 +2X2)E 2 1

2 2 2{4W X (1-A)Eu +A~ 2
3 2 4 1 (l) '1',1 1

k2k
2 + 2k2 1A2Ek + 2A3 W22A2E ]dg 1d 2  (3.1)

where

kl = WI+A W k2= 2CW+22 W X )1 32' 2 2 3 1 2  3 22 (3.2)
k k2= 2X2( +'2
k2 1  3 (W1 2 3 W2 2)

and

1- 2 3 2
k = x1(l-lx2 )u1 .1 + 3_X2 )

A1 , = 1 3 )(3A 2 )X_ (3.3)

i2 2 ( 2_X2 -

A2  (x1x) X2  )X 3 
2

The necessary condition for stability may then be written as

G [u] > 0 (3.4)

for all u satisfying (2.19) and the linearized incompressi-

bility condition

X 1u + XJ u + E = 0 (3.5)1 1,1 2 2,2
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which is obtained from (2.5).

For any specified value of A3 , a critical value of A

for which a bifurcation solution of the static problem exists,

occurs when

6G2 [ = 0 (3.6)

for some non-trivial displacement field u which satisfies the

boundary conditions of the problem. We shall call the state I

corresponding to such a value of A a critical state. With the

definition of stability given at the end of §2, state I will be

stable if G2 [u] is positive definite in a neighborhood of

u = 0 . We say that a critical state is at the stability limit

if G2 [u] has a zero stationary value, i.e. if G [u] = 0 for

a non-trivial value of u satisfying (3.6) and (3.5) together

with the boundary conditions of the problem.

In order to determine such a value of u ,we proceed in the

following manner. We take account of the constraint condition

(3.5) by introducing the Lagrange multiplier -4t3p(IV 2) and

obtain from (3.1)

6G = 2t3 f f [kl{6K[U] + 2(A+2A2)E6E}2 2

+ X3W {4X (1_X2)(E6ul+U 1 6 E ) + 2AE6E }

+ 2k2 kk + 2k21A2(E6k+kdE)

14 -1 X1u2+6]dd2
+ 44 W A2ESE - 2p(A 6u +XJ di +6E)]dUdl,

3 22 2 1 1,1 2 2,2 129
(3.7)

where, from (2.10) and (3.3)1 ,
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Sic[u] = 2{[(ul,- Xu2,2)6u1+ (u-2,1u Xu,2)6u2],

+ [(u2 2 -Xu1 1 )6u2+ (u 2+Xu2 ,1 )u 1],2
-( 2

(U1,11 +U 1 ,2 2 )6U1 - (u2 ,1 1 + 22 2)6u 2

k6k = A12 () ll 2 1 ) 2- { 1 16 l

(1~X 2 _X2 ){(~) + U 6E} + (X2-A2 )2 E6E
+ 1 11 1,1 3

(3.8)

With (3.8) and (3.3) 1 , we obtain from (3.7)

( 2  z1

6G2 [u] = " 3  [6U 1 F1 1 +6u 2 F2 1] 1 dC2

+ S ~ 1 F 12 +6u 1F 2 2 21 d
L-z 2

-f f (F1 , 6u,+F 2a,(' u-F F33 5E) d Id4}2
S(3.9)

where

F = {k +X 2 (1-x2) 2k }u -Xk u
11 1 1 2 1,1 1 2,2

+ x1(l_2 )E{2} 2W+(X2_x2)k2+A k1}_k[
Ip

F2 1 - k1 (u2 ,1+XU 1,2
)  F1 2  k 1 (u 1 ,2+Xu 2 ,1

F2 2 = k (u2 ,2-. u, 1 ) p  
(3.10)

22 122 2 + 2

F E{k (A2+2A 2) + A2 A W
33 1 3 2 3 12

+ (x2_A 2H(A 2 A 2)k +2A k + 2X 4A2W }
3-2 3 2 2 221 32 22

+ Xl(1- 2 )ul,l {2 XW 2 + (_ x 2)k + A 2k2 1  -P

From (2.19), 6u1  is constant on each of the faces

= 1 Then, from (3.9) the condition 6G2 = 0 implies
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F, =l F2aa= 0 , f f F33 d 1 dE2 = 0 ,(3.11)

together with the boundary conditions

Z2

F21 Fdo 0 on i ±L1 (3.12)

2

and

F12 = F2 2 = 0 on E2 ± 2. (3.13)

Solutions of the homogeneous system of equations (3.5) and

(3.11)-(3.13) can be found of the form

-sinQEl cs

u 1.= 1 , u 2 - U(C 2 )CosII 1  singE1

(3.14)

E - 0 p = :SI} P(E2),
sinQEJ

where

= nw/211 , n = 1,2,..., (3.15)

the upper (lower) solution corresponding to n even (odd).

The functions UI(E 2) and P( 2) are given in terms of U by

U' U' (3.16)
IM

where the prime denotes differentiation with respect to E2

and
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a= U" -( _(-I) 2AB2 2U , (3.17)

with

A=(X+l) 2k2
A =  +k 2 k 2 (3.18)

U( 2) satisfies the differential equation

U(iV)-{ +1+(X-1)2 A) 2U ' + 2U = 0 , (3.19)

and the boundary conditions

U + -2 2U = 0
22on 52 - .2  (3.20)

U"'-{2X 2+1+(X-) 2A} 2U' = 0 2 - 2

Solutions of (3.19) with (3.20) have already been obtained

(see, for example, [1,2]). These are either even or odd func-

tions of E 2 and represent respectively flexural or barreling

deformations.

From (3.1) we obtain, with (2.10), (3.3) (3.10) and (3.14)3,

+ X 2(1X2)2 2
G 2[u] = 2Z3  f{k,[u] + Xk 2u 1 }d 1dE2

2t 3 f fuF,,),,-uaF,,8 +p(X 11j'u, ,+A U,) dl

(3.21)

We have, with (3.12) and (3.13),

f f(uaFa8 ),OdSld&2 -- I [uaF.t2l2 d j+ f [uCF.J] d 2 = 0

- -- 2 -(3. (3.22)
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Then, with (3.11)1,2, (3.5), (3.14)3 and (3.22), equation (3.21)

yields

G2[u] = 0 . (3.23)

Accordingly, for any displacement field of the form (3.14) the

critical states are states of neutral stability.

Substituting from (3.14) in (2.10)2, we obtain, with

(3.16)1,

K[u] = (2A2a2 f )-[(X2 +l)i2U'2 + U"2+ A2&Q4U2+ 2A 2 2 (UU')'

+ (-1) ncos 22l{(X2+l)Q2U,2-U"2-X2gU2-2X2a2 al,(3.24)

where

a=UU" U2 (3.25)

We note that K[u] is necessarily an even function of 2
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4. Potential energy near a critical state

Paralleling the procedure of our previous paper [3], we

develop the stability condition that G[u] be positive definite

for all u satisfying the kinematic constraints (2.5) and (2.19)

and lying in a neighborhood of u - 0

We take

u= + , (4.1)

where u is the solution for u given by equations (3.14)-(3.20),

e is a small parameter, and U satisfies the orthogonality con-

dition

I Uii d&d = 0. (4.2)J i'im 1 2

We then determine the value of ii which, for a fixed value of

E , gives a stationary value of G[u] . If this value of

G[u] is positive (negative) then the critical state is stable
(unstable).

With (3.14)3 and (2.4), we can rewrite (4.1) as

A 2- 2-T sa'
ua =LEu + C ua, E = £2B , say, (4.3)

where, from (4.2),

J u a , g d&1 d 2 = 0 (4.4)

Also, since u must satisfy the incompressibility constraint

(2.5), we obtain, with (4.3) and (3.5) and the neglect of terms
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of higher degree than the first in e

-1- -1 A_ A_ A

u +X_1 u - E + X(u u -u u1 U1 1  2 2,2- 3(A1,2 2,11,12,2)

+U O (u u2  u2 u -u u u 4SCA ,3 1u,2u2,u2,1u,2- 1,1 2 ,2-u2 2u ). (4.5)

Again, since u must satisfy the constraint (2.19) on

i -  we have

)= -ue1-,' 2) = )1e' (4.6)

where e is a constant.

It is shown in Appendix A that, with (4.3), G[u], given by

(2.22), may be expressed to order e in the form (A8), thus

G[u] = G[eu+c2]

= 2 [-] + U 3 3  1 (43 4)+g 4)dE 1 dE2 ,(4.7)

where the g's are defined in (A9). From (3.23), G2 [u] = 0

We will now show that the remaining terms on the right-hand side

of (4.7) are of order ch .

We replace u,,p,E by uia,p,E - 0 in (3.10) and use the

resulting equations, together with (A3) and (A9)1 , to express

(3)g9 3  in the form

4 (3) = 2( uFe(),8-u-aF8,, . (4.8)

From (3.14)12, (3.16)land (3.25) we obtain
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A A 1 UU,, fl~acsQ
1,2 - 2 = {(uu)' (-1) cos2 2I . (4.9)

Also, from (3.14)1,4' (3.15), (3.24) and (4.9), we obtain

- -1 1f u1 dE =f u 1 K u d J u i1'1) d4

-L- t --i

expression for g(3)  and (4.10), (3.1l)-(3.13), we obtain, to

order c

A(-

- 2 ,2U fI )d ld&2 m (4.Fr)

Also, from the expression (A9 for g(3) and (4.10), we obtainf 2A f~ U i u u -2 2 2,121122

(3)& = 0 . (4.12)

With (4.11), (4.12) and G2[ u] = 0 , equation (4.7) yields

G[u] = eI = 21 L3' f f u 1 u, (4.13)

where

g = g() + 2X3 P( 1 2 2 1 u2 ,1 u1,2 -u1'1u2 ,2-u2,2 '1 ,1 )•

(4.14)
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5. Conditions for G to have a stationary value

In this section we shall obtain differential equations and

boundary conditions determining the field U which satisfies the

kinematic constraint (4.5) and the orthogonality constraint (4.4)

and leads to a stationary value for G . We use the method of un-

determined multipliers to remove the constraints and accordingly

write, neglecting terms of order e in (4.5),

2t, f f 2p[XI'i1 ,1+X'i2 2,+

-x3 (u1,2 u2,1 -u1 ,1u2, 2)] + 2Xual, u 8 did 2  (5.1)

where -4t3P = -4 35(El 2) and 4t3 = constant are the Lagrange

multipliers associated with the constraints (4.5) and (4.4) res-

pectively. Then for G[ii] to have a stationary value,

6G[U] - 0 (5.2)

for all U in the neighborhood of ii = 0

From (5.1) we obtain, with (4.14), (A9)4, (Al) and (A3),

UGi? 3 tf f (Tra 6 u ' +F 33 6E)d 1 dE2

3fr 2 _t 2 F2 -t2 Eall~1 d f2+ 2 F 2 iJ ~

- f f (P u a - F33 6E)S6 YE2} (5.3)

where F and F3 are defined by

iL
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F1 k x(x 2 -1) 2 k 1- (X-X)k U2 ,2 - xk,

-2 2 2,212 X - )p p j2 +

-xl(X 2 -1)k 2U i( 2_ x 2 ) + A 2 ,

F1.2 --k1 R1z2+Xu'2 ,) + A 3 Pu 2,

(X2 ....

)k+ (5.4)

F2 2 =k 1(Z 2 2-Ai,1) - ) 2 P- 3 P,1pu 2,

F3 2

- 2X -I ) _k 21 k I3(Uil,2A , - -2,

F ~~ ~ k (U Xp

2 (X2 1)1,W 2  2 3 1 2+221}1,1

2 1)k2xk 21.

+2(i X)k 3 +2A2 k31 }(Ul )2A

With (5.3) and (4.6) the condition (5.2) yields

F = 3 i = 0 (5.5)

j and

z2  1,- ,1 ,

F 2= k F2,d2 = 0 on = X; 3

-2_ (A(5.6)

12 2 222 3 2on = :t:.

I!
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These relations have the same form as (3.11)-(3.13) with F.,

replaced by F a$

Neglecting terms of order e in the constraint (4.5), we

obtain

11 221 2 x(A (5.7)

1 1,1 2 2,2 3 1,2u2 ,1  1,1 2,2(

With the expressions (5.4) for F and F and the expressions

A 
a$ 33

for u and p obtained in §3, equations (5.5)-(5.7), together

with the orthogonality condition (4.4) and the additional boundary

condition (4.6), provide a set of equations for the determination

of u E, e, p and .



22.

6. Development of the governing equations for u

In this section we obtain from (5.4)-(5.7) expressions for

u- analogous to those given for u in (3.14).

We first use the expressions obtained in §3 to substitute
A

for ua and p in the expressions (5.4) for F and F3 3

and obtain the new expressions for Fa$ and F33 given by

equations (Bl)-(B3) of Appendix B.

From (3.14), (3.15) and (4.6), we obtain

AA

U1 , 2 - u2,1 -1,2 o I on 1= (6.1)

Accordingly, with the expressions (5.4)2 for F21 , the boundary

condition (5.6)1 may be replaced by

G = 0 on %=+Z 1 . (6.2)

From (5.7) and (4.9) we obtain

X,+U 2,2X E (2X [(UU')'-(-l) ncos2&} (6.3)

We shall assume a solution for U , E, F, p and j of the

equations (5.5)-(5.7), (4.4) and (4.6) of the form

- 1
U= UlsinQl +INi.

U2 = U cos2n&, + 1 UU'-X 2 (F+E)E 21 2 (6.4)

P cos2Q 1 + Q

x=0,

where U, U1 , P and Q are functions of &2 only, and U is a
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function of 2 only determined by equations (3.19) and (3.20).
We note from (3.14) and (3.15) that expressions for Ui

a

of the form (6.4)1,2 automatically satisfy the orthogonality con-

dition (4.4), the boundary condition (4.6), and the boundary con-

dition (6.2) which is equivalent to (5.6)1. By substituting from

(6.4), in (6.3) it follows that
12

2 + -X al (6.5)

where a is defined in (3.25).

Introducing the expressions (Bl) for F., given in Appendix

B into (5.5)12, we obtain with (6.4)4 and (3.18) the differential

equations

kI{[I+(,X-1)2 AluzI-, 2 -iP'I =  -)[1-ln (0

k f ( , +2ls (6.6)
k('12,11 2,22 ) _ ,2 P'2 2222 1 1 1

where f22 and *ao are defined in equations (B2) and (B3)

of Appendix B. Now, substituting in (6.6) for U. and from

(6.4)1,2,3 we obtain

k-{U-4 2 (1(-)2AU)+ 2'X-,F P" (_,)n 2111

k1 4 X) - 2 P ' a (-)n 22+2921) (6.7)

kI(UU )" 2Q' - 2A f2
1~ 22

Eliminating P from (6.7)1,2 and using (6.5), we obtain

u(iV)-4 n2 (A2+1 +(X_1) 2AIU + 16X 2aU -(-i) ;3 , (6.8)
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where

{q- 4X2 a2  +2
3= x q + S 221)

and (6.9)

1 " 4XX21
q {a" -42 [l+(A-1) 2A] + 2 (€122R€11)}

'2 1T- 1-2O1

It is shown in Appendix B that 0 may be expressed in the form

given in equation (Bll).

With (6.5), equations (6.7) 1,3 yield

Ak 42 2 _' n1= {i-4Q [1+(X-l)2A]U" + (-1)nq}
4XSI

(6.10)

Q i X2 22 .

With equations (Bi) in Appendix B and (6.4)4 , the boundary

conditions (5.6)3,4 yield

k 1 (U 1 2 +Xu2 , 1 ) = (-1)n, 1 2 sin2nl
on 2(6.1)

kl1(a 2,2- XUl, 1 ) -x 21 p . f22+(-1)no22 cos2QE 1

Then, substituting from (6.4) in (6.11), we obtain, with

(6.5) and (6.10)1

Ulf + 4X2Q 2U =-(-l) nX4

on 2 = 2 (6.12)
S 4f2 (2A 2{ + (X-I) 2 A}U'= 32

3I
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where

OX1 2 

2A 2 3  k (6.13)

2 2 2X- 2X - 2

It is shown in Appendix B that i and 02 may be expressed

in the forms given in equations (B14).

We also obtain on t2 2

Q k I [U -(2-" + E)]-f f (6.14)Q k[(U' ) - 2  -2f22

It follows, with (6.10)2, that (6.14) is valid throughout the

body.

The relations (5.6)z and (5.5)3 express the assumptions of

dead-loading in the 1 and 3 directions respectively. We sub-

stitute in them the expressions for FI and F33  given in

equations (BI) of Appendix B. Then, using (3.2), (3.3), (3.15),

(3.18), (6.4), (6.5), (6.9), (6.10), and (6.14)1, we obtain

P e + aE Xb , ae + a b (6.15)
1 3 12 X3 2 (.5

where

a, 3A2 + +(A-1) 2 A ,

a = X{2W +X2 X2W +(x2-x2)(X2-X2)[W
k X 2  21 1 3 2 2 1 2 3 11

+ (x 2 +x2 )W +X2 X2W } (6.16)
1 3 12 1 3 22
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a2  kI {(3X 2+X2)(W )+X2Wa2 k 2 2 3 1 12

+ 2X2 2 )2 (Wll+2X 2W X
+ 1 1 1W22

and

(_,)n,, £ -

8ta21f2(U, +4X2S02U)'dE22£
2'_2 

Xlq+L 2 f (UU' + 0 [I+(X-I)2A]+ -+ r,--11.2 ,

t2 2  2 X 2 4 Xf 2  ( 6 .1 7 )

+ (f11  11 -Xf2 2)}d 2

b2 X 2 {(Uu ) + 2 -X f)d2
= 2F (f 33 2 22

With the relations (6.12)1, (6.13)1 and (6.9)2, equation

(6.17), yields

b = X 1-2 {(UU')' + 1 (f.18)
-Z2 l f2)IC2C.8

The expressions for b and b2  may be rewritten in the forms

given in equations (B16) of Appendix B.

Equations (6.15) may be solved for F and to yield

- 3 k3

-3 (bla2-b2 a) , E = X3 (b2al'bla) , (6.19)

where A , assumed to be non-zero, is defined by

A = a a2 -a2  (6.20)

From (6.19), we obtain

b i + b2  '  (a 3 2+a b2 _2abb2) (621)1 2ab 11b2 1 2
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7. Development of the expression for G[U]

In this section the expressions obtained for d and in

§3 and the expressions obtained for i in §6 are used to write

the expression for G[ul] given by (4.13) and (4.14) in terms of

the functions U(%2) and U(C2) only. With (2.10)2, (5.4),

(5.6) 1 and equations (Al), (A3) and (A9)3 in Appendix A, we can

rewrite the expression (4.14) for as

g iaF a), -UIa +ULia H S+E(F 3 3 +H 33) + H
(7.1)

+ X3 P(u1,22, 1 -u 1 ,1 u2, 2 )

where

-12XX(X 2 -1) 3 k3 (u1, 1 ),

22 -- - - -,)k- C3 2_ 1) 2 ,2 - X 1 )

A A

A AX 

A

12 = X3p2,-A 1 (A-1)k2 u1 (u, 2+Xu 2 ) ,(.
H~ ^A x3G.,_J ( X2 _ l k , ( 2 z x z 2  (7.2)

= 2 2 2
H ={X W !(X X ~)k +'Z' k 21ii33 322(2 3 2

+ 2X12 (21)2(k2 1 -6(X 2-2 )k +2A k31(Ul'j)
11 2 33 2 311,2^ 2^

H k([]) 2 X 2(X21) 2 k 3 (U1 ,) [u]

+ 16X k (2-1)ik(^

We now substitute in (7.2) the expressions for U^ and p

given in (3.14) and use (3.16), (3.18) and (3.24). Then, with

the notation introduced in equations (B4)2, (B5) and (B17) of
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Appendix B and the further notation (cf.(3.24))

i ( 2 +l)0 2 U' 2 + U '' 2 + X204U2 + 2X2 02 (UU' (7.3)

S= (X2+I)g 2U'2 - U'2 - X2&hU2 - 2X 2a

the following expressions for H are obtained:

kz

H - - 41X2 {h11+(-l) 
n n l cos2 n

1
11 4US

H = 1 { h+(-i)% n2cos 2n~
H22 2222

2k

2

H 33 =2X 2 S2  {h 33 + ( _l ) n , 3 3 c o s 2SI l
} , (7.4)

k

21 = a 2 ( q)nlsin2nZ

2

where the h's and n's are functions of E2 only given by

h 11= 28'U' + A{K 1+2(X2 +l)9
2U' 2 } + 4(X-1) 3Bg2U'2

h2 2 = aIU + 2 X2X2U t2  (7.5)

2_ 2 2U'2 ,
33

and

rin = 28'U' + A{K2+2(x2+I
2 U 2 } + 4(X'I) 3 B a 2U ' 2

n22 a h22 

(in33 - FK2 + (,X _"l2;n2U'2 (7.6)
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r112 = a'U + A U)(U"+x,2 a2U)21 8'U" +K2 2 2

r1= a 'u + X Ail2U ( +u"-2 U)

We also obtain

k1
H = X h+(-l)nh cos2 h 4QE 1 (7.7)

84a4 3 1 ~ 1+h2co~ 1 77

where

h A (21c2+K2) + 2-1)2B 2U  ( +4((A2-1) +

14 4 ,14+ (X-l) CQa U , (7.8)

and

48(X+l)4 kC = A3A3kI

The corresponding expressions for hI  and h2  will not be

required.

We now substitute from (7.1) in (4.13) and use (4.4), (5.5) and

(5.6) to obtain

G[3] = 2 f Hua,H a  + EH33+ H

+ A ,  A . (7.9)

Then, introducing into (7.9) the expressions (7.4) and (7.7) for
H 8 and H and the expressions for % and F given by (6.4)

and (6.5), using (4.9), and carrying out the integration with

respect to E, we obtain
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4X 3i 2 S2 16 2i

- (t2  g 3 +g g 4 )d 2 + 8A 2 _ hd3 2, (7.10)

-2 - 2

where

gl -t + 2n12 + {4Q2c+4(X 1)AQ2a + 2 n1 1

+ 4r 22}U' + 8n 21U

92 = T11a + T12 e a+ 4h 2 2 (UU')' -X 2 aq

++ 2Q2{(UU')2 8X2 X2 Q
2 f22 (UU')', (7.11)

k1

g 3 
= h11 + 2h 2 2 + 4X 2 Q2(UU')' '

94 - 2(h2 2 + X2 S2(UU')'- h 3 3 )}

Introducing into (7.11), the expressions (7.5) for
3),4

h1l, h 2 2, h3 3, we obtain

3= 4aU' + 4X 2Q2(UU')' + 2(3X 2+1)A 2U' 2 + A :I

+ 4(X-1) 3 Bi 2 U' 2 , (7.12)

= 2{ + X (UU')'- Z7"i+ 2X 2Ai 2U 2

-(2_ 1) 2 d' 2 U' 2 }

From the expressions (B7)5 and (7.3) for 8 and I we

obtain, with (BIS),
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' = (U'U") '-u" 2 - l+(X2-1)Ang2U'2

K = [U I(U"+X2 2 U) - U{U"' -[2 X2+(X2-1)A] U }]' (7.13)

-(X2-1)AS2 Uf2

We now substitute from (7.13) in (7.12), use (BiS), and

integrate the resulting expressions for g 3  and g " Then with

relations (3.20) we obtain

1 f42(eg3 E4)d Y 2Z2  2(b F4b 2E) , (7.14)

where b1  and b2  are given by (B16).

Noting from (7.6),, with (B7),, that r12 1  may be written

in the form

I --,

21= 21' (7.15)

where

+(A-+ 12~2
I21 = U"2 +- ')2 ue+A 2fu2 (7.16)

and that

auu" (alu")-G('u')' "+ ,
(7.17)

1.2 1 n2 1' ' n J2u'-

we see that the expression (7.11)1 for gl may be rewritten

in the form
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g g11' + g12' (7.18)

where

= -a,-, I 4 1w 2 1 }S2 a 4 4911 12+4{I (11" )A} R a+21 +41 22-4 21  (7.19)

g2 -c'dI + (c%1+2ni)U + 4-n U

The expression (7.19)2 may be rewritten (cf.(6.12)1 ) in the form

g12 2 1

+ (a ' +2n12)U' +4(X2 2 U nka 1  (7.20)

Using (6.12)i, (6.13)1, (7.6)4, (7.16), (BlI), (B13), and

(3.20), we obtain from (7.20)

(12 d [{7 X2  2 2 UUUIJ g12d 2 = +[7 1*l(A2-1)Af2U 'l

!2 I2

; -~4R2{ (X2+l1A) U' 2 A2 f 2U2 }u] Z2
22

22l 2 2 '2 t
-2X {7X2+1+(X2-1)A}[UU' (U'2+X2 2 U2 )] 2 (7.21)

2 -2

In order to simplify the expression for g1l, we substi-

tute from (7.6) and (7.16) in (7.19)1 and employ (B7) and

(7.3) 2 to obtain
-3 (U"~~ 22" "

911 368 +X2 S1 2U) + 68'U -A{6X2n2UU+4U
'2

+ 2U'U"' + 3(X2+1)e hU2-6(2A2+1)g2U '2}

+ 8(X-1) 3 BU2 U' 2 , (7.22)
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where a is given by (B7) 4 .

From (7.11)2 we obtain, after a lengthy calculation in which

equations (B2)2, (B3) 1 ,5 , (B4) 2, (B.5), (6.9), (6.10)1, (6.14),

(7.3) 2 , (7.5)2, and (7.6)4 are employed,

1g2 = 2 (g 2 2 "g2 1 ) ' (7.23)

where

921= a(a'-28'U) + 2AaU'(U"+X 2 U)

and (7.24)

Sa 2+ 42 a 2{l+(X 2_l)AJ} + 4a(8'U'-O"U)

+ 168'U' (UU')' + 8X 2 2(UU')'} 2

+ 4A{a[3(X 2  U 2-U"2_ x2a4U2_ 2x 2a2a]

+ Ot'U'(U"+x2 2 U) + 8X 22 U 2(UU')'}

+ 16(X-1) 3 BS2 aU' 2

With (3.20)1, (7.24)1 and (B12), equation (7.23) yields

Sg2 d- 2 -, 2 (X 2 .1)(1-A')[UU,(U,2+X2Q2U2)] 2

2 F X2

+ g22d 2  (7.25)

-2

We now substitute in (7.10) from (7.11), (7.18), (7.21),

(7.25) and (6.21) to obtain

G([U] 411213X3k1 (GI-G2+G3-G4) , (7.26)
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where

G1 = 1 t2 [22+ n2 -_l)",__ , 4 dL 2  ,
2 IV 12

32X'3Q2 2 f-t2

G2= 1 [UI' 2+X2Q2U2,

2 [] 2 2

G-z;n [{7X 2 +1+(X 2 -1)A}UU'iU" (7.27)
3  -8A5/2 Xl 2)

3 22

2 2 2_
G4 =- (a1b2+a 2b -2abib2)

where A is defined in (6.20) and the a's and b's in (6.16),

(6.17)2 and (6.18).
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8. Some asymptotic expansions

In this and the following sections, we suppose that the

plate is thin and calculate ?[u] for the case when the bifur-

cations is of the flexural type.

It has been shown in [ 3 ] that if the value of n de-

fined by (cf.(3.15))

n = Qt2 * n 2 1(2t 1 ) (8.1)

is small, then the critical value of X at which a flexural

bifurcation can occur is given by

-El2 + 1 + o(n 6  (8.2)

We now introduce the notation

ct= IaX~ W(O = WaIX.1 , W(O) =2 W,I=.. etc.,

(8.3)
k() k , , ==i k A=, (a=l,2)

and note, from (2.9)1,2 and (2.10)1 that

ll-J1 =n3 2 (1 2 -J 2 ) = (x-)2{I(X) + (X-) 2

3 14J 
3 ( -

) + 0( -l) } . (8.4)

* The integer n in (8.1) is the number of half-wavelengths along
the 1-direction in the flexural mode under consideration. If the lowest-
order mode is not suppressed by means of some type of passive constraint, no
value of n greater than unity is relevant.
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With (8.3) and (8.4), Taylor's theorem yields the following

approximate expressions for W ap W W aa, W aa

W = + ~'(Xl) 2 [-(X-) +(X1) 2] (O)+xwC)
a a 3 la 3 2a

+ 1 ~2( 4

+ O(A-l) ,(85

w = w(O)+Xl (X_1 2 [1w()]~(Wo))+o2(A-))+(_
aOy aBy 3 cia 3 2aO

W = W(O) + O(X-l) 2

OYS aaYd

From (8.3), (3.2) 1,2 and (A7), we have

2.O = 3(),2), k2 (Wfi)+2 X2W(o)+X14W(o))

1(O 1 3 w)+ 2 ) 2 11= 3 12 3 22 ' (8.6)

k(O) = l(()3XWO XWo+XWo

With (8.5) and (8.6), equations (3.2),2 and (A7), 4 yil

=k(O)+l -I (Xl~rrr 2+,~() 1

k . 7 (O +3~J X-2~.-l k3 (X_1)4

+ Q(X-l)5

k k(O+12X1 (X(8.7)
k2  k(- -l) 2 [1-(X-l)]+O(X-l)4

2 (0 2

B - B~)~.B o)X~l + O( -l 2, C + O(Xl) 2
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where, from (B4 )2 1 (BS) and (A7)3

ACO) = AI~. 4k~o)/(X k(O))

B(O) = B 48k(O)/ (X~k(O)), (8.9)

C(O=c32 (W(O) +4 X2W(O) +6X4 W~0 ) +4X6 W( 0 )1111 il 3 1112 3 1122 3 1222

3 1+ x8W(O)
3 2222)
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9. Asymptotic first-order solution

We define the dimensionless thickness coordinate t by

t = /It 2 (9.1)

and write

V(t) = U(& 2 ) . (9.2)

Then, noting from (3.15) and (8.1) that

I d 1 d
'a _ n ' (9.3)

and using the expression (8.8), for A(0 ) , we can rewri'e the

differential equation (3.19) as

1 dhV ()] 2

I d 4-{2+2(X-1) + (X-1) 2 (1+A(0 ) + O(X-l) 4}- d2V

+ {1+2(X-1) + (X-1) 2}V = 0 , (9.4)

and the boundary conditions (3.20) as

I d 2 V21=
12 {i+2()-i) + (X-) 2 }V-- 0

r2 dt2

1 d3V {3+4(Xl-_)+(_1)2(2+A(o)) + O(_l) 4 1 dV 0 (95)
3 dt 3  T at

when t = ±1

With the asymptotic expression for X-1 given in (8.2),

equation (9.4) can be rewritten as
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1 d--V 4{2+ + 13 +A(0) + O(T,6)} I d 2V
nT dtT3 9 - n2 dt 2

+2 524 6
3{+4n +4--rn +O(n 6 ) }V = 0 (9.6)

and the boundary conditions (.9.5) can be rewritten as

1 d2V + { + 2 524 + (n6 )IVnT d2 n +T~n+o.}r1

n dt3

1 d3V 8 2 4 426 (6) }1 L ld (97

on t = ±1 It can easily be verified that the solution of

(9.6), with the boundary conditions (9.7), is given by*

1 =l.f
2 ~2 4 1 2 1 4 + 6 4 2 1 4 1 6 (98

We note that to order n6 , V is independent of both X

and the form of the strain-energy function W

# We employ the normalizing condition V(O) = 1.
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10. Asymptotic second-order solution

We define V(t) by

= (-l)nX((t) , (10.1)
2 3

where t is defined by (9.1). Then, with (9.3), (8.2) and

(8.8)1, we can rewrite the differential equation (6.8) as

1 d V 4 2 4* 1 d2V
-46[l4S2+ O~h] _~ )] dn d dt

+ 16[1+ 4 2 +O( )I (10.2)

and the boundary conditions (6.12) as

1 d2V 4 2 5214 6
-2 dt 2 + 4[1+3  -ri ++( T) ]  =-

(10.3)

1 dV -4[382 4426 +AM)+1 j_ dV -

n3 dt3

when t =±1 , where

T~t = -4 €2 , i~t = -21(Y2 T2(t) =l ' 2( 2 )

(10.4)

and (D 2 I (2 and 02( 2 are given by (BIl) and

(6.13).

With (9.1), (8.2), (8.8) and (B5) we obtain from (10.4),

(Bli) and (B14)
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-n( = 4 +A ) + 0(n5 )

13 + A(O)) + 01 , (10.5)

2It=-±1 = 211 [(+02+.A ( 0 )) +

With these expressions introduced on the right-hand sides of

(10.2) and (10.3), it can easily be verified that the solution

of (10.2), subject to the boundary conditions (10.3), is

1Tt+ 2 7 1 2 4 1(0) _22 +I
+n (-+it ) + ( A _7A +1t )

+ r 6 [D-(-+ 1 A(0))t2 + (.+ 1 3  Co))th+ Ft 6] +0(n 9 )

(10.6)

where D is a constant which could be evaluated if

the calculations were carried out to a higher order in n

However, the value of D will not be required for the calculation

of C[ii] which is the main object of the present paper.

It is seen from (10.6) that V and hence, from (10.1),

U - depends on the form of the strain-energy function W only

through A( 0 ) , defined in (8.9)1. From (8.6)1 and (8.9)1, we

see that

(o)+2 (o)+X4W(o))
A(0) ~ ~ ~ 8W12 312 3W22)

= A 1 (10.7)
X (W 0 )+X 2W( 0 ))
3 1 3"2
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11. The asymptotic expression for G[i]

In order to calculate G'[ii in the asymptotic case when

2 /.<< 1 , we use the formulae (7.26) and (7.27) and introduce

into the latter the relations (9.1), (9.2), (9.3) and (10.1).

Then, we introduce, in the expressions for G1 , G2 , G3  and G4

so obtained, the expressions (9.8) and (10.6) for V and V and

systematically neglect terms of higher degree than the fourth in

n.
Calculation of G1

Following this procedure we obtain from (7.27)1,

a 4 +1 2.Xk dV+ 4hdf(1i

G1  + 4hd32X 3  fl (g2 2 + ll d(

-1 A

where gll, g22  and h are defined by
911 g22l g62

A 4 -6 A 8
1  = h , (11.2)

and g1 1 , g22  and h are defined by equations (7.22), (7.24)2

and (7.8)1. With (9.2), (9.3) and (10.1) and the notation

A -2 ~ 2 A 4 A4

a , 1  I ' K2= '2 (11.3)

we obtain from these equations

=-3^( 1 d +U x2V) + od

(6X 2  d 2V + 4 d 2V) 2 + 2 dV d3 V
n W n d n dt
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3(X 2 +1)X2V2 - (2X2+)(dV)2L

TI

= (dt)2 + 4a-+(X _ 1) La-dV di
22 n2 +( -i) 2-tr a dt 2

!A

+16 d dV d dV+ 8A at rVdV,) 2

Tiut t tavt T* t-

n[3(A2+l)(dV)2 _ ',.- 1.(
( dva_ _!i!Vd2V 2_ X2V 2 - X2^] (14

1 da dVd 2 g 2 8A2 ,dV2 d dV)A
+ j'a " d-" " + X2,2V) 2 _W_ (a_

4(t1 12 TI t) T+1)
+16(X-1)3BA " dV(2

V24 _dV\

" 1 d2V dV2

Ti d (11.5)

X2I 1d~t Ir2 22 ---22 ' " d vdV*""" = X"2 " d - '  + B 2X +,

4TiX _ ) Ti d T i 2

= X+dV2 1 Cd2 V2 2V2

IFC

From (B5), (8.8) 1 and (8.2), we obtain the following

asymptotic expression or A

2 t__11 5
. .... . 2+I ........ . 2 1ii m4L ... +I X2 2 +.. 2 X2. d -
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= A(0)(1 2 1 4 + O(n 6  (1.6)

We now substitute in (11.5) the asymptotic expressions for

V, X and A, given in (9.8), (8.2) and (11.6) respectively,

and obtain the following asymptotic expressions for a, as K(

and 2 :

2' 2 2 4 8 1 4 6a + .2 t )+ n ~~ t)+ 0(r

2 2 2 48_4(0 2 14 6A -t
(11.7)

16 28t +8t
(-.x+4t) +  (-8t2+8t ) + O(n 6 )

2 24 2 +T4 i6 A 162 6

With (9.8), (8.2), (11.6) and (11.7), equations (11.4) yield

9 = n 2 (12-A(0)) + n {4- A(0) +4 ( 2 +A(0))t2} + O(n 6 )

922 = 4-n 2 (8+24t 2 ) -hi{n I -V 7 ( 1 - A (o ) ) 2 + 4 0 t

g 2 2  - 15-~ ) *4t 1(11.8)

+ 0(n6)
4A22 (03t ) + 0(n 6

Substituting from (11.8) and (8.2) in (11.1) and carrying

out the integration, we obtain the asymptotic expression for G

4i 1 _, () 4143-19- AoM 6)
G1 Qn{4 _n2(+ *A(O)) + n 4 l -3- + O(n }. (11.9)

Calculation of G2

With (9.2), (9.3) and (8.1) the expression (7.27)2 for G2 can be
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rewritten as

Q4 dV ((dV 2.,,,1V)
'A d [V dt 2n22]l " (11.10)

2An

With the asymptotic expressions (8.2) and (9.8) for X and V

respectively, this yields

G2  -- -a ( -16n 4 + O0 0 1  1 .1
2

Calculation of G3

With (9.2), (9.3) and (10.1) the expression (7.27)3 for

G3  can be rewritten as
3 3 d

G 8/3 [{7X2+I+(X2 d V

-4{(X 2+1 -x)( dV )2 X2 n2 V2IV(1.22+ dt A V }V]t= 1 " (11.12)

We introduce the asymptotic expressions (9.8), (10.6) and (8.2)

for V, V and X respectively and obtain, with (11.6),

G I4 1 2 7 LA(0) 4 2S 17 A(0)) Or 6 )3 11~ (- +- ) + ri *- +0n)
(11.13)

* Calculation of G4

With (9.1), (9.2) and (9.3), we can rewrite the expressions

(B16) for bI and b2 as



46.

b 2 ji !V 1 2 + _l(dV) 2{,ll(A2 +3 ) A
nl dt

12

+ -(X2_I)A2 - (X-1) 3 B}]dt (T (11.14)

b 2 fl I rd 2 V 2 1 _dV.222 2 -t

-[X2+l+(X 2-1)E]A+(X2-1)2ir}]d t ,

where E and d are defined in (B.17). We introduce the

asymptotic expressions for X, V and A given in (8.2), (9.8)

and (11.6) and obtain

bI = 2b2 = -12{i-2 + 4(1-_A ( 0 ) ) + 2(26)}.(1.15)

Substituting from (11.15) in (7.27)4 and using (6.20), we obtain

G = 24 {1-2rl2 +n4 ( 8-.A(0)) + O(r 6 )} , (11.16)

where

4 a (11.17)

4(a1 a2 )

and a,, a2  and a are defined in (6.16). We note that they

depend explicitly on 3

In order to simplify our calculations of the asymptotic

expressions for a1 , a2  and a , we will restrict them to the

case when X3 = 1 . Then introducing (8.2), (8.5)1,2, (8.7)1 and

(8.8) into (6.16), and taking X3 = 1 , we obtain
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a1=4{+ 2 ~4 13 1 6
a, = 4{1 + i + n (1-'5" + A0 ) + 0

2a1
a2  (11.18)

4 1Q44  31 1

4n42 IS 1 + o(n 621,

where

A 0) and -- (11.19)A0 A I = n W(0)+W(O)
1 2 =3 1

With (11.18) we obtain from (11.17)

1y {3 -32 +4 (7 _8 16 2 1
]72~ ~ -3 j*~ ~A 0 ) + 0O(ni) (11.20)

Then, introducing (11.20) into (11.16), we have

4 1 3 2 4197 5A 4 8 2) 6 1.1

Calculation of G(ui when A 3 =1

We now introduce into the expression (7.26) for G[] ,

the expressions (11.9), (11.11), (11.13) and (11.21) for

G1 , G2 , G3  and G and take A3 = 1. With (8.7), and (8.2)

we thus obtain

Gu=e1 Z2LKofl 4 2{+2 38 §+ !!A +16 32 c2 +(n6

(11.22)

where
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KO= k (O) 1 = [W(O) 0 )](O) (11.23)1 ix,3=1 1 2 3= 1

It is instructive to make the substitutions

W(O) 2W(O)(1-2 , (11.24)

in (11.22), which may then be rewritten as

' I 3t3 1 - -8-6) + O(n4 4 (11.25)

If the material is neo-Hookean, 6 - 0 and equation (11.25)

becomes

t13K n t 982 43- rZ3  [- +o(n ] (11.26)

We may compare this result with that obtained in a previous

paper [ 21 in which an analysis similar to that in the present

paper was carried out for a neo-Hookean material with K0 =I

and arbitrary X 3 It was found (see (7.19) in [ 2]) that

it3x3n6  2 1 2 (
G 6t3  (I.- (16 + +3n +O(n (11.27)

By taking X 1 in (11.27) and K in (11.26) we see

that agreement is obtained.

SIi
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Appendix A

In this section we shall prove the result expressed by

equation (4.7).

We introduce the notation (cf.(3.3)1 )

= Xl (1-x2 )ul 1 + (X3-X 2) (Al)

and the operator K[ii,u] defined by

K[Eii+C2U] = c2K[i] + 2e3K[d,E] + E4 K[U] . (A2)

With (2.10) 2 we obtain

K+,] uUu u u uu2,1 1,2 1,1 2,2

-u (A3)-2,2 '1,1) . A )

With this notation and equations (4.3) and (3.3)23 , we

obtain from (2.12), by neglecting terms of higher degree than

the fourth in c ,

i = 2+A,.l.12)G.,l 2 {K[Ul + 2k} + 2r31 [ii]

+£ {K[U] + (X 3+2X 2 )

j = 2(12EA + 4c3EX (1-X 2 )u (A4)
2 1 1,1
+_4f(2<(] + 4A (1-A2)~ U + A El

Again to order c, we obtain from (A4)
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2 4 2 2 (1-A2) 2 (, )2

+ 4 [2 8 (1- 2 )u1̂ cl4 i, ] +4[]k+4k ,
+ - {(Kt[u]) +8X +4K}

43 = 2 (  _ 2,1)

+ 12c X (I- ) (U 2 {K[u]+2

14 14 4 214 ( 14
i 16 ex (1-X)(u 1 , ) , (AS)

ij = 4e3 A x (I-XA)uIIE + 2e E{A 2i[u]+2A2k
+ 4X (1-X2)2 (Ul, )2}

i 2j = 8F-4 A2(_1X2)2 ( II 2E,
) (1 1 )2 E

i2 = 4c4A 2f2
2

Also, from (2.11) and (2.16) we obtain to order c4

W( 3) = 3i3 + k31i2j W (4) = k4i 
4 , (A6)

where

+2 +4 + 6 )k 3  -- 6(WllI  +3X3W 112  +3X3W122 +X3 W222) ,

k 1 2(W +212W +X4 ) , (A7)

31 = TX3 112 3 122 3 222
k .. = (W+4X +W b, +6 W 64+ 8
k31112 6i3 1122 3 1222 3W22 2 2 )

We now substitute from (4.3) in (2.22), and use the relations

(3.1), (3.2), (3.3), (3.21)1 ,(AZ), (AS), to obtain, to order C4

G[u] - G[u^+e 2]

M c2 G2 [] * 2t 3 C3 J (g (3)+g,(3)'cg(4))d d& (A8)

ii.

i

.. .. . ... 
]
.... . . ..- - ... 1 2.... 1t 2~l . .. .. . L . . .. . ,=
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where

g ( 3) = 2{kl[d'u] + x2 (I-X 2 ) 2 k 2 6 1 1 i 1 1 } '

g(3) = )k Eu
92 1 3- 2 2 k2A21 }EI, :

2 1,1 1 31,1'k2 = k1 [{]+ i]2+1-X)2k3Xu),I

14 '2 2) jT2gC9 k Kz{ + ( X3+2X 2)}

+ X 2W2{2K[ ] + 4iI-x 2 ) u,,+AjiT2}

+ k 2 {4(Ic1 1 2X 2u}uu (A9)

+ k{4 X1-X 2 ) 2 (u,) 2 E + A[ + 2A E)

+ 2,. W 2 T2 + 12X1i_ 2 )2 2 1)
2{ ]23 W22 A 21 -x)k 3(ul,) u [ + 2k}

28 2 2 A 2i

+ 8A1 ( 1-X 2 ) 2 A 2 k 3 1 (u 1 )
16X C1I- 2) ^k1 Cu

k (ull)
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Appendix B
We substitute in (5.4) the expressions for Ul, u2  and

given in (3.14) and obtain, with (3.16) and (3.24),

Ft {k +X;k2 (02- ) 2k2 )U1, i- Xkl,2 -X1

-Xl(X2_1 ) {2 k2W _2 k +A2
1111,1

~~1( 21){23W2 -(X 2- ) k2+A 2k2 1}E

_A

F k +X -(-,nnlC°22 + -- X
21 1 2,1+U1,2)- 21 1 2,1

12 = k 1(i,2 '12, 1 )-(-1)n¢ 12sin2 l + 1,2(Bi)

F 22 =kz (1'2,2-'Ul,.l)-X2 IF - f 22- (_,)n,¢22 cos~NC1+ x 2,2

F { X2)k +X3AW+2_ 2k

3 2 12 --

-2(X2 -X3 )A2k2 1 2 3 2 W2 2 }-p

X (X2 _1){2X w2 _ 
2 2-X 1 3 2- 'X2 A 3 3) k 2+A 2 k21}l ,1

-f3 3 -(-l)n, 3 3cos2SiE

where the f's and *'s are functions of 2 only defined by

fl= (4A X2 2 1 2klO'U'

2(x 2'2 242 22+X 21")k215 X2+I)i2U 2+U"2+X2 a U +2X2 2 (UU')'J
24 X1 LXk-i)L 3k32U'2},

2  1 2

x[(X 2+I) 2U'2 +U"2 +2 U2+2k2f2(UU')']

22 2

f -2X~() S1)2'kI1  I +22-, )k 2 2 h 2 2 (B2

22 ~ ~ 2
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and

ll (4 2 2-l{2kla'U'+X2(X
2 -1)k2 13( 2+1) 2U '2

-U"2-A2 a 2-2A2Q2a] + 24A4 (A2 -1)3k3 2 U'21

22 f 22

-(2 2 -1 [2 ( _x2) (B3)
S2f 2 2 P

x[(2 +1)Q2U' 2_U 12_2 U2 _2X2A 2a]

+ 2X2 (X 2 _ -1) 2 [k 1-6(X )k3+2A 2 k3 1 ]a
2U '2

(X2 x3- 1 k U i "+X 2 (A 2 _ Ik A 2 02' " UI S 2U)
21 (2A 2 23-lk'U"1(A2"k U (U1 1 U)}

12 (2AA2Xl)-'{k2'U+2 2(X21)k2UI(U+X2a2U)
}

We introduce the notation

4X2 xa3 6Xl4(X+l) 3k32 ' B -- (B4)
k1 21 k 1

and (cf.(3.18))

- (x2 -1)k
A A-1 A = 2 (BS)

3 1

Then, we obtain from (B3)I, 2 4 5  (B2) 2 and (3.17)

= k
4 12 {2 U+[3(X2+1)2u'2-u'

-A2g4U2-22n2a] + 4(A-1) 3Bg2U' 2}
k (B6)

¢22 = 1 2 (8'U'+2AA2n 2U' 2) '
2x 2 sl



54.

€12 = 2 0{U 22

[U"2-{If+( 2 -1)j}0 2 U' 2 + XA2 2 (U'2+g 2U 2)]'

We note from (3.17), (3.19) and (3.25), with the notation

(BS), the relations

= UU"-U'' 2  01= UU"' -U' U"

a " =  2 {A 2 +1+(A 2 _I)A}(at+U' 2 )-(U,, 2 +X 2g U2)
(B7)

= u i"-{l+ 2 -l)A}Q 2 U , B'=U"' -{l+(X 2 -1)A} 2 U',

8"= X 2 I2 (U."- a 2 U ) •

With these relations, equations (B6)2 ,3 yield

022 = 2 2

22=4X A 2 [UX-+3 1A~2t~2~2

012 = - {(I A) (U'U"'.2 2 UU")2(B8)
+ U2"2-(I-2)g2U ' 2 }

We now substitute from (B6)I and (B8) 2 in the expression

(6.9) for q and use the relations (B7) to obtain

q [{X 2 -3(X2 +3)A}- (1-4A)U"2

72+
+ {X2 +3- (X 2+9)A-8 (X-I) 3B}lg2U ' 2

-(3-?A')X2,24 U 2-2 (1-A)U'U"' +2 (I+A')X 2 g 2 UU"] • (B9)

From (3.19) and (BS) it follows that



2(U'U"')' = [(U" ) 2+{X 2 +1+(x 2 _-1) A 1 2 U'2-x2ghU2]'. (BlO)

Then, from (B9), (BlO), (B8)1 , (B6)4 and (B4) 1 we obtain the

following expression for 0 defined by (6.9):

= 1- 1 {(. 2 -1) + (2 2+1)A'}g2a

- {S (2 +1); "- (X2 1_  2 8 (X-l)'B }Q2U'2

+ 5A "2+,,k2 4U2] . (BIl)

From (3.20), (BS) and (B7) we obtain

a= -(U' 2+x2 Q2U2 ) ,

a ={3A2+j+(A 2-l)A}12 2 UU' on 2 = -t 2 (B12)

X = a22U I

With these relations and (3.20), we obtain from (B6) and (B9)

(- =  1 UU' 2 2 (- 2 ) k" (l+A)U' 2

12 2 2 222 2

q -9 [2{2 (X21+4-X21T+(13I 2  (B13)
=2

+ X2{4 X2 -(X 2 -1)A1} 2 U 2 ]

Equations (B12) and (B13) yield the following expressions for

1 and 02 defined in (6.13):

~ ~ 2- m i .. ' ....
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1 2 X- 2 (X2- 12}UU -

D 20 2X- [{2 X2-1+2 (X2+1)A- 2  -1)A

+ 2(X-1) 3B}U' 2-_1X 2 (X2 -1)AQ2U2  . (B14)

From (B7)5 and (3.19) we readily obtain, with (BS), the

identities

, ,, 2 2 2 -U{"'2

x2u 2 - [U (U x 2 U)-U{U -[2 +l+(X2-)A]12U }]

-2A 2 112 (UU , ) , _U, ,
2-fA 2+l+(X 2 _1)AI'S 2 U ,

2 , (BlS)

x2 2 (UU') I+ &U'={U'(U" 2 2U)} -U"2-{1+(X2-1)A}g2U
' 2

We now substitute from (B2)1,2,3 in (6.18) and (6.17)2

and use (3.20), (B4) 2, (BS) and (B15) to obtain

bj=-- 1 J2 [U",2 +j 2 ut2{l-(X2 +3)A
2t2 2 1 2 3I

+ 4('-)2(X-L)3B}]dE 2 (B16)

b 2 1 2 2 "2 2 ,2
U[U +22U {1

2
2 22 -2-_2

_ ( (A 2+ 1) + (A 2-1 ) ]X A ( 2_ 1 2d'} ] d 2

where c and d are defined by
A-3

-1 (x2 +1Ak IX 3171 ~'- 3 2 1" 2F" (A,3W2 . 2 A2k21.) .x -i_

2 -X (B17)

d AN 2 k (k2 1+2A2k 31)-2X +l)3 B
3 1 3

with k and k21 defined in (3.2), k3 in (A7), and A2 in (3.3).
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